On the characterization of claw-free graphs with given total restrained domination number

نویسنده

  • Xiaoming Pi
چکیده

A set S of vertices in graph [Formula: see text] is a [Formula: see text], abbreviated TRDS, of G if every vertex of G is adjacent to a vertex in S and every vertex of [Formula: see text] is adjacent to a vertex in [Formula: see text]. The [Formula: see text] of G, denoted by [Formula: see text], is the minimum cardinality of a TRDS of G. Jiang and Kang (J Comb Optim. 19:60-68, 2010) characterized the connected claw-free graph G of order n with [Formula: see text]. This paper studies the total restrained domination number of claw-free graphs and characterizes the connected claw-free graph G of order n with [Formula: see text].

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

$k$-tuple total restrained domination/domatic in graphs

‎For any integer $kgeq 1$‎, ‎a set $S$ of vertices in a graph $G=(V,E)$ is a $k$-‎tuple total dominating set of $G$ if any vertex‎ ‎of $G$ is adjacent to at least $k$ vertices in $S$‎, ‎and any vertex‎ ‎of $V-S$ is adjacent to at least $k$ vertices in $V-S$‎. ‎The minimum number of vertices of such a set‎ ‎in $G$ we call the $k$-tuple total restrained domination number of $G$‎. ‎The maximum num...

متن کامل

Characterization of total restrained domination edge critical unicyclic graphs

A graph with no isolated vertices is edge critical with respect to total restrained domination if for any non-edge e of G, the total restrained domination number of G+ e is less than the total restrained domination number of G. We call these graphs γtr-edge critical. In this paper, we characterize all γtr-edge critical unicyclic graphs.

متن کامل

Total Domination and Matching Numbers in Claw-Free Graphs

A set M of edges of a graph G is a matching if no two edges in M are incident to the same vertex. The matching number of G is the maximum cardinality of a matching of G. A set S of vertices in G is a total dominating set of G if every vertex of G is adjacent to some vertex in S. The minimum cardinality of a total dominating set of G is the total domination number of G. If G does not contain K1,...

متن کامل

Bounds on total domination in claw-free cubic graphs

A set S of vertices in a graphG is a total dominating set, denoted by TDS, ofG if every vertex ofG is adjacent to some vertex in S (other than itself). The minimum cardinality of a TDS ofG is the total domination number ofG, denoted by t(G). IfG does not contain K1,3 as an induced subgraph, then G is said to be claw-free. It is shown in [D. Archdeacon, J. Ellis-Monaghan, D. Fischer, D. Froncek,...

متن کامل

Graphs with equal domination and 2-domination numbers

For a graph G a subset D of the vertex set of G is a k-dominating set if every vertex not in D has at least k neighbors in D. The k-domination number γk(G) is the minimum cardinality among the k-dominating sets of G. Note that the 1-domination number γ1(G) is the usual domination number γ(G). Fink and Jacobson showed in 1985 that the inequality γk(G) ≥ γ(G) + k − 2 is valid for every connected ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره 5  شماره 

صفحات  -

تاریخ انتشار 2016